

www.elsevier.nl/locate/jorganchem

Journal of Organometallic Chemistry 609 (2000) 95-103



# $H_2$ binding to and silane alcoholysis on an electrophilic Mn(I) fragment with tied-back phosphite ligands. X-ray structure of a Mn-CH<sub>2</sub>Cl<sub>2</sub> complex

Xinggao Fang, Jean Huhmann-Vincent, Brian L. Scott, Gregory J. Kubas\*

Chemical Science and Technology Division, MS J514, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

Received 20 January 2000; received in revised form 16 April 2000

#### Abstract

The solvent-coordinated cationic complex  $[mer-Mn(CO)_3{P(OCH_2)_3CMe}_2(ClCH_2Cl)][BAr_F]$  (4), has been prepared by the reaction of the methyl precursor  $mer-Mn(Me)(CO)_3{P(OCH_2)_3CMe}_2$  with  $[Ph_3C][BAr_F]$ . The coordinated solvent,  $CH_2Cl_2$ , binds to Mn through one chloride atom in the X-ray crystal structure, which also exhibits novel interligand hydrogen bonding between an acidic hydrogen on  $CH_2Cl_2$  and an oxygen of the phosphite. 4 binds  $H_2$  in equilibrium fashion, and the  $\eta^2$ - $H_2$  complex has a very high  $J_{HD}$  of 34.5 Hz indicative of the high electrophilicity of the metal center. Silanes also displace the bound  $CH_2Cl_2$  at low temperature, although the  $\eta^2$ -Si–H bond undergoes heterolytic cleavage on warming. 4 catalyzes reaction of SiHEt<sub>3</sub> with phenol to give Et<sub>3</sub>SiOPh and H<sub>2</sub>. The bound  $CH_2Cl_2$  in 4 is displaced irreversibly by olefins, ethers, and amines, to form stable adducts. The cationic  $[Mn(CO)_3(P(OCH_2)_3CMe)_2]^+$  fragment is more electrophilic than phosphine analogues, and the tied-back phosphites give less steric congestion and, importantly, cannot engage in agostic interactions that would compete with external ligand binding. The results in these and other related systems bring to the forefront the subtle balance between electronic and steric forces that occur on addition of sixth ligands to 16 e<sup>-</sup> metal fragments. © 2000 Elsevier Science S.A. All rights reserved.

Keywords: Manganese; Dichloromethane; Dihydrogen; Silane; Phosphite; Cyclooctene

#### 1. Introduction

The coordination and activation of small molecules such as H<sub>2</sub> and silanes by formally 16 e<sup>-</sup> electrophilic transition metal complexes has drawn considerable recent attention [1–5]. The binding properties of H<sub>2</sub>  $\sigma$ ligands are dependent primarily upon the electronic environment of the metal complexes, but steric factors can be critical for larger  $\sigma$  ligands such as silanes (SiH<sub>n</sub>R<sub>4-n</sub>; n = 1-3), olefins, and alkanes. Generally, cationic electrophilic metal centers with CO ligands favor formation of  $\sigma$  complexes of H<sub>2</sub> and silanes over oxidative addition to hydrides and silyl(hydrides) because the weak M  $\rightarrow$  L backdonation cannot promote X–H bond cleavage. In particular, electrophilic manganese complexes, [Mn(CO)(dppe)<sub>2</sub>]<sup>+</sup> (1) [6,7], and [Mn(CO)<sub>3</sub>(PCy<sub>3</sub>)<sub>2</sub>]<sup>+</sup> (2) [8], and its Re analogue [9], all of which contain agostic C–H interactions (Scheme 1), were recently reported to reversibly weakly bind  $H_2$  in place of the C–H.

$$\begin{array}{c} PR_{3} \\ \downarrow \\ L_{n}Mn - Br + NaA \xrightarrow{-NaBr} \left[ \begin{array}{c} R_{2} P \xrightarrow{C} C \\ \downarrow \\ L_{n}Mn & H \end{array} \right]_{[A]^{-}} \begin{array}{c} H \\ \downarrow \\ IA \\ agostic \end{array} \right] + \begin{array}{c} H_{2} \\ H \\ L_{n}Mn - H \\ H \end{array}$$

Such cationic agostic complexes, which of necessity contain low-coordinating  $BAr_F^-$  (B[C<sub>6</sub>H<sub>3</sub>(3,5-CF<sub>3</sub>)<sub>2</sub>]<sub>4</sub><sup>-</sup>) anions, can be prepared according to Eq. (1) by metathesis of a metal halide with NaBAr<sub>F</sub> [6–8]. They can possess multiple internal C–H interactions as in 1, and are valuable synthetic precursors for coordination of relatively weak ligands such as H<sub>2</sub>. However, other weak ligands, including both  $\pi$ -acceptors such as SiH<sub>3</sub>Ph, and  $\sigma$  bases such as Et<sub>2</sub>O or CH<sub>2</sub>Cl<sub>2</sub> do not coordinate (silane reactions with the Re species were not reported [9]). Presumably organosilane binding does not occur for steric reasons because SiH<sub>3</sub>Ph does

<sup>\*</sup> Corresponding author. Fax: +1-505-6673314.

E-mail address: kubas@lanl.gov (G.J. Kubas).



bind to isoelectronic, neutral  $W(CO)_3(PCy_3)_2$  and is activated towards oxidative addition [10]. Third row metals such as W have a larger coordination sphere and less steric congestion than first row metal such as Mn.

Possibly because of steric effects, weak bases such as  $Et_2O$  and  $CH_2Cl_2$  do not displace the agostic interaction in  $M(CO)_3(PCy_3)_2$  (M = W, Mn<sup>+</sup>, Re<sup>+</sup>), but they do form isolatable adducts with a more electrophilic 16 e<sup>-</sup> fragment with four electron-withdrawing CO ligands and only one phosphine,  $[Re(CO)_4(PR_3)]^+$  (R = Cy, *i*-Pr, Ph). The latter has been isolated only as six coordinate solvento species,  $[Re(CO)_4(PR_3)(S)]^+$  (S =  $Et_2O$ ,  $CH_2Cl_2$ , pentafluoropyridine) [11,12], and an agostic precursor complex has not been observed, although the weakly-bound  $CH_2Cl_2$  is displaceable by  $H_2$  Eq. (2) [11,13].

$$L_n \text{Re} - \text{CH}_3 + \text{HA} \xrightarrow{\text{S}}_{-\text{CH}_4} [L_n \text{Re} - \text{S}] \text{A} \xrightarrow{\text{H}_2} [L_n \text{Re} - \text{H}_2] \text{A} + \text{S}$$
(2)

The above Re solvento [11,12] or agostic [9] complexes were prepared by treatment of the methyl complexes with acids (Eq. (2)), or alternately for the former, with  $[Ph_3C][BAr_F]$  to give  $Ph_3CMe$  and  $[Re(CO)_4(PCy_3)(S)]^+$ .

Another synthetic option for preparing such precursors or H<sub>2</sub> complexes is protonation of a hydride to directly give the H<sub>2</sub> complex or a precursor complex via rapid H<sub>2</sub> elimination, if the H<sub>2</sub> complex is very labile. For example, the protonation of the phosphite complex, *mer*-MnH(CO)<sub>3</sub>P<sub>2</sub> (P = P(OEt)<sub>3</sub>), with CF<sub>3</sub>SO<sub>3</sub>H at low temperature afforded in this case a neutral anion-coordinated complex, Mn(CO)<sub>3</sub>P<sub>2</sub>( $\eta^1$ -OSO<sub>2</sub>CF<sub>3</sub>) (3) (Scheme 1), without detection of the cationic H<sub>2</sub> complex formed initially [14].

$$MnH(CO)_{3}P_{2}CF_{3}SO_{3}H \xrightarrow{\text{El}_{2}O} [Mn(CO)_{3}P_{2}(H_{2})]$$

$$CF_{3}SO_{3} \xrightarrow{-H_{2}} Mn(CO)_{3}P_{2}(\eta^{1}-OSO_{2}CF_{3})$$
(3)

The failure in detecting  $H_2$  complexation in Eq. (3) is presumably due to the immediate coordination of  $CF_3SO_3^-$ , which unlike  $BAr_F$  is not a low-coordinating anion. The same type of reaction carried out in ethanol using aqueous  $HBF_4$  as the acid yielded the aquo complex  $[Mn(CO)_3(P)(H_2O)]BF_4$  (P = PPh(OEt)<sub>2</sub>), which can be considered a 'solvento-type' complex, where the water from the acid binds to the metal center instead of the anion. Similarly, protonation of mer-Mn- $H(CO)_3(PP)$  (PP = dppe or depe) with HBF<sub>4</sub>·Et<sub>2</sub>O in CHCl<sub>3</sub> at r.t. afforded  $[Mn(CO)_3(PP)(H_2O)]BF_4$  [15], where the water is from adventitious sources (H<sub>2</sub>O is clearly a stronger ligand here than BF<sub>4</sub>, a known coordinating anion). Thus there are four different synthetic routes to four possible reaction products in these systems: (a) a solvento complex, (b) an anion-coordinated species, (c) an agostic complex or (d) an  $H_2$  complex. The trends for (a)-(d) formation cannot be predicted and depend on several factors including the electrophilicity of the metal center, sterics and relative binding strengths of the sixth ligand. Entropy effects play a large role here, and agostic binding can be favored by up to 10 kcal mol<sup>-1</sup> over external ligand coordination

It would be of interest to further tune the steric and electronic properties of analogous Mn(I) complexes with phosphorus donor ligands and low-coordinating anions. The tied-back phosphite ligand,  $P(OCH_2)_3CMe$  in **4** is of interest here for several reasons. It is both a weaker  $\sigma$ -donor and a stronger  $\pi$ -acceptor than analogous phosphines, and should increase the electrophilicity of the metal center. Most importantly, unlike **2**, it lacks accessible C–H bonds to form agostic interactions that would compete with binding of very weak external ligands, e.g. alkanes.



 $\sigma$  alkane complex

Such  $\sigma$  complexes are being highly sought for studies of C–H activation, but  $\Delta H$  of binding is at best only 10–15 kcal mol<sup>-1</sup>, which is not enough to overcome the entropic advantage for internal agostic C–H coordination. A stable (or even transient) 16 e<sup>-</sup> fragment that cannot possess competing agostic interactions is necessary for observing  $\sigma$ -alkane coordination, which is an intermediate in alkane activation on for example highly electrophilic cationic platinum complexes [16–18]. Also, CpRe(CO)<sub>2</sub>(cyclopentane) has been observed by NMR at low temperature [19], so Group 7 carbonyl complexes are appropriate targets for isolation of alkane complexes.

The tied-back phosphite is also sterically more compact than phosphines and may accommodate alkanes, silanes, olefins, and other more sterically demanding ligands in first-row metals. Here we would like to report the synthesis of **4** and other adducts of a highly electrophilic cationic 16 e<sup>-</sup> Mn(I) fragment with tied-back phosphite ligands and a weakly coordinating BAr<sub>F</sub>



| Table 1 |      |     |           |            |     |         |   |
|---------|------|-----|-----------|------------|-----|---------|---|
| Crystal | data | and | structure | refinement | for | complex | 4 |

| Empirical formula<br>Crystal size (mm <sup>3</sup> )<br>Temperature (K)<br>Wavelength (Å)<br>Space group                                                            | $\begin{array}{c} C_{46}H_{32}BCl_2F_{24}MnO_9P_2\\ 0.04\times0.08\times0.25\\ 203(2)\\ 0.71073\\ Triclinic, \ P\overline{1} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit cell dimensions<br>a (Å)<br>b (Å)<br>c (Å)                                                                                                                     | 13.0850(7)<br>14.5411(7)<br>15.0947(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $ \begin{array}{c} \alpha & (^{\circ}) \\ \beta & (^{\circ}) \\ \gamma & (^{\circ}) \end{array} \end{array} $                                                       | 93.482(1)<br>104.105(1)<br>98.799(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Theta range for data collection (°)<br>Reflections collected<br>Independent reflections<br>Final <i>R</i> indices $[I > 2\sigma(I)]$<br><i>R</i> indices (all data) | $2 \\ 1.4-26.4 \\ 14 \\ 134 \\ 10 \\ 116 \\ [R_{int} = 0.0196] \\ R_1 = 0.0716, \\ wR_2 = 0.2035 \\ R_1 = 0.0964, \\ wR_2 = 0.2217 \\ 0.0217 \\ wR_2 = 0.2217 \\ wR_2 = 0.$ |

anion. The labile dichloromethane ligand in the valuable synthon 4 can be displaced by  $H_2$ , ethers, amines, olefins and silanes, which undergo heterolytic cleavage. Facile heterolytic cleavage of both  $H_2$  and silanes are observed on the cationic system  $[\text{Re}(\text{CO})_4(\text{PR}_3)(\text{L})]^+$ [11,13].

(4)

Bound  $H_2$  can be highly acidic on cationic systems (p $K_a$  near zero or less) and can readily protonate ethers or other weak bases B as in Eq. (4) [1]. Cationic silane  $\sigma$  complexes can be observed at low temperature but are nearly always unstable towards heterolytic cleavage at room temperature (r.t.) [13,20]. The Mn-phosphite system offers an opportunity for further study of these types of reactions, which in principle may occur for alkane activation.

#### 2. Results and discussion

#### 2.1. Dichloromethane complex (4)

The cationic dichloromethane complex 4 is prepared in high yield as outlined in Scheme 2. Treatment of Mn(CO)<sub>5</sub>Me [21] with two equivalents of  $P(OCH_2)_3CMe$ (1-methyl-4-phospha-3,5,8-trioxabicyclo[2.2.2]octane) [22] in refluxing toluene yields the tricarbonyl methyl complex 5. The mer-configuration of 5 is shown by the IR CO stretching  $(v_{CO})$  pattern: 2035 w, 1952 s, 1926 s. Reaction of 5 with  $[Ph_{3}C][BAr_{F}]$  [23] in  $CH_2Cl_2$  leads to the  $CH_2Cl_2$  complex 4 as yellow crystals in 82% yield. The  $v_{CO}$  values for 4 (in CD<sub>2</sub>Cl<sub>2</sub>), 2096 w, 2025 s and 2004 s, are much higher than those (2048 w, 1962 s, and 1942 s) of the phosphine analogue 2 (where an agostic interaction takes the place of  $CH_2Cl_2$ ). This is a result of weaker backdonation from Mn to the CO ligands in 4 and suggests that the Mn(I) center in 4 is significantly more electrophilic than that in 2. The <sup>1</sup>H-NMR spectrum of 4 shows a resonance at 5.33 ppm corresponding to the free  $CH_2Cl_2$  (free exchange with the solvent, CD<sub>2</sub>Cl<sub>2</sub>, occurs). In contrast, the less electrophilic and more sterically demanding 2 does not bind CH<sub>2</sub>Cl<sub>2</sub> [8]. The bound CH<sub>2</sub>Cl<sub>2</sub> cannot be removed from solid 4 by exposure to high vacuum for hours, but can be displaced in solution by H<sub>2</sub> and other ligands as will be shown below. As for 1 and 2,  $N_2$  does not react with 4, presumably because  $N_2$  is a very poor  $\sigma$  donor, weaker even than CH<sub>2</sub>Cl<sub>2</sub>. In contrast to 4, the analogue 3 with non tied-back phosphites is found to coordinate the  $CF_3SO_3^-$  anion instead of  $CH_2Cl_2$ solvent [14]. This demonstrates the importance of using the low-coordinating BAr<sub>F</sub> anion because anions such as  $CF_3SO_3^-$  are stronger ligands than  $CH_2Cl_2$  and perhaps other small molecules of interest here, e.g. H<sub>2</sub>. Also in this regard, all mononuclear dichloromethane complexes are cationic because CH<sub>2</sub>Cl<sub>2</sub> is a very poor base and coordinates only to strong metallo Lewis acids.

Only a handful of dichloromethane complexes have been structurally characterized, and coordination can be monodentate [11,12,24], bidentate as in the first CH<sub>2</sub>Cl<sub>2</sub> complex characterized by X-ray diffraction by Strauss and coworkers [25,26], or bridging via both Cl in a Ru<sub>3</sub> cluster [27]. In order to determine the geometry in 4, single crystals were grown from mixed CH<sub>2</sub>Cl<sub>2</sub> and hexane solvents and were subjected to X-ray structural analysis (Table 1 and Fig. 1). The complex shows typical octahedral configuration with *trans*-phosphite ligands. The CH<sub>2</sub>Cl<sub>2</sub> molecule is bound to Mn through one chlorine atom Cl(1) with a Mn-Cl(1) distance of 2.4109(13) Å. The average Mn–P distance, 2.2281(12) Å, is shorter than that found in 2, 2.354 Å. Regarding the metal-CO bonding, the distance for Mn-C(2) trans to the bound  $CH_2Cl_2$ , 1.803(3) Å, is much shorter than

the Mn-C(1) and Mn-C(3) distances of 1.867(5) and 1.880(5) Å, respectively. This reflects a strong trans effect: the nearly pure base CH<sub>2</sub>Cl<sub>2</sub> does not compete for backdonation with the CO trans to it unlike the situation for the other two CO ligands that are trans to one another. Hence the Mn-C(2) bond is stronger than the other M-CO bonds, and M-C distances generally decrease as the  $\pi$ -acceptor strength of the ligand *trans* to CO decreases. Several closely-related Group 6 and 7 complexes show this behavior [7], especially 2 where the weak agostic interaction (with virtually no  $\pi$ -acceptor strength) is trans to the CO and the Mn-C distance is even shorter, 1.761(7) Å [8]. The C(4)–Cl(1) distance for



Fig. 1. Ortep diagram for complex 4. Selected bond distance (Å) and bond angles (°): Mn-C(1) = 1.867(5), Mn-C(2) = 1.803(3),Mn-C(3) = 1.880(5), Mn-P(1) = 2.2328(12), Mn-P(2) = 2.2234(12),Mn-Cl(1) = 2.4109(13), Cl(1)-C(4) = 1.804(5), Cl(2)-C(4) = 1.720(7),C(4) - O(9) = 3.185(6),H(4B)-O(9) = 2.418(idealized H), P(2) = 176.97(5), C(3)-Mn-Cl(1) = 93.59(15),C(1)-Mn-Cl(1) =86.52(16), P(1)-Mn-Cl(1) = 86.47(4), P(2)-Mn-Cl(1) = 94.53(5), Cl(1)-C(4)-Cl(2) = 112.1(3), Mn-Cl(1)-C(4) = 118.2(2).



Scheme 3.

A weak interligand hydrogen bonding interaction appears to occur in 4 between an acidic hydrogen on CH<sub>2</sub>Cl<sub>2</sub> and an oxygen atom on the phosphite ligand. The distance between O(9) and an idealized hydrogen position H(4B) is calculated to be 2.418 Å, well within the general range for C-H···O hydrogen bonds [28,29], which for example can involve the oxygen of CO ligands in metal complexes [30]. The distance between C(4) and O(9), 3.185(6) Å, is within the short end of the range (3.0-4.0 Å) for such an interaction, although the C-H...O angle, 135.7°, is more acute than normal. Hydrogen bonding involving haloalkanes is common, and the hydrogens on the CH<sub>2</sub>Cl<sub>2</sub> ligand might be expected to be more acidic than in free dichloromethane because the electrophilic metal is withdrawing electrons from Cl. The coordination geometry of the CH<sub>2</sub>Cl<sub>2</sub> ligand is not distorted from that in related complexes. A precedent for any type of hydrogen bonding to an oxygen atom of a phosphite ligand was not located in a literature search. The hydrogen bonding interaction energy in 4 can be estimated to be several kcal mol<sup>-1</sup>, which may help stabilize the CH<sub>2</sub>Cl<sub>2</sub> coordination.

#### 2.2. Dihydrogen complex (6)

Exposure of a yellow solution of 4 in  $CD_2Cl_2$  to ca. 3 atm of  $H_2$  gave a similarly colored solution that showed a broad signal at -9.19 ppm in the temperature range of -60 to 25°C. The peak is attributed to the  $\sigma$ -bound H<sub>2</sub> ligand in **6** that is presumably undergoequilibrium exchange with CH<sub>2</sub>Cl<sub>2</sub>-CD<sub>2</sub>Cl<sub>2</sub> ing (Scheme 3). Integration showed that only about 2-3%H<sub>2</sub> complex was present, but this merely reflects the much greater concentration of CD<sub>2</sub>Cl<sub>2</sub> over H<sub>2</sub> rather than relative ligand binding strengths ( $H_2$  may actually be the stronger ligand). The <sup>31</sup>P-NMR chemical shifts for 6 and 4 are virtually identical,  $\delta$  155.1 and 155.2, respectively, indicating similar net ligand effects for H<sub>2</sub> and CH<sub>2</sub>Cl<sub>2</sub> (although these ligands are not electronically similar because  $H_2$  is a moderate  $\pi$ -acceptor). Replacement of H<sub>2</sub> with HD gas afforded the  $\eta^2$ -HD complex, [mer-Mn(CO)<sub>3</sub>{P(OCH<sub>2</sub>)<sub>3</sub>CMe}<sub>2</sub>(HD)][BAr<sub>F</sub>], which showed a  $J_{\rm HD}$  coupling of 34.5 Hz ( $J_{\rm PH}$  is not seen because the peaks are too broad, as for most HD or  $H_2$  complexes). As can be seen in Table 2, this is the highest value found for any Mn-Re phosphite-phoshere.

Table 2

 $J_{\rm HD}$  coupling constants and H–H distances for H<sub>2</sub> complexes of Group 7 fragments with *trans*-CO ligands

| Metal fragment                                                                             | $J_{\rm HD}~({\rm Hz})$ | H–H (Å) $^{\rm a}$ | Reference |
|--------------------------------------------------------------------------------------------|-------------------------|--------------------|-----------|
| $[Mn(CO)(dppe)_2]^+$ (1)                                                                   | 32                      | 0.89-0.90          | [6]       |
| $[Mn(CO)(depe)_2]^+$                                                                       | 33                      | 0.87 - 0.89        | [7]       |
| $[Mn(CO){P(OEt)_3}_4]^+$                                                                   | 32                      | 0.89-0.90          | [14]      |
| $[Mn(CO){PPh(OEt)_2}_4]^+$                                                                 | 32.5                    | 0.88 - 0.89        | [14]      |
| $[Mn(CO)_{2}{P(OEt)_{3}_{3}}^{+}$                                                          | 33                      | 0.87 - 0.89        | [14]      |
| $[Mn(CO)_3(L)_2]^{+ b}$ (6)                                                                | 34.5                    | 0.84-0.86          | This work |
| $[Mn(CO)_3(PCy_3)_2]^+$ (2)                                                                | 33                      | 0.87 - 0.89        | [8]       |
| $[Re(CO)_4(PCy_3)]^+$                                                                      | 33.8                    | 0.85 - 0.87        | [11]      |
| $[\operatorname{Re}(\operatorname{CO})_3(\operatorname{PCy}_3)_2]^+$                       | 32                      | 0.89 - 0.90        | [9]       |
| $[\text{Re}(\text{CO})_3(\text{PPr}_3^i)_2]^+$                                             | 33                      | 0.87-0.89          | [9]       |
| $[Re(CO)_{3}{P(OEt)_{3}}_{2}]^{+}$                                                         | 30                      | 0.92-0.94          | [37]      |
| $[Re(CO)_2(PMe_2Ph)_3]^{+ c}$                                                              | 31                      | 0.90-0.92          | [20]      |
| $[\operatorname{Re}(\operatorname{CO})_2 \{\operatorname{P}(\operatorname{OEt})_3\}_3]^+$  | 33                      | 0.87 - 0.89        | [37]      |
| $[\operatorname{Re}(\operatorname{CO})\{\operatorname{P}(\operatorname{OEt})_3\}_4]^{+ c}$ | 33                      | 0.87–0.89          | [37]      |

<sup>a</sup> Except where noted, calculated from and bracketed by the empirical relationships,  $r_{\rm HH} = 1.42 - 0.0167$ ;  $J_{\rm HD}$  [32] and  $r_{\rm HH} = 1.44 - 0.0168$ ;  $J_{\rm HD}$  [33].

<sup>b</sup>  $L = P(OCH_2)_3CMe.$ 

<sup>c</sup> In equilibrium with dihydride tautomer in solution.

phine complex with varying numbers of CO ligands and is among the highest ever reported (35 Hz for  $Cr(CO)_3(P^iPr_3)_2(HD)$  is the highest; H-H = 0.85 Å [31]). This is consistent with  $\eta^2$ -H<sub>2</sub> binding to a highly electrophilic metal center with a relatively short H-H distance (calculated [32,33] to be 0.84-0.86 Å from  $J_{\rm HD}$ ). In all cases CO is *trans* to H<sub>2</sub> in Table 2, and the nature of the trans ligand exerts by far the greatest influence on properties such as  $J_{\rm HD}$  and H–H distance [7]. However, the cis ligands do have some effect, although not always according to the expected trends, e.g.  $J_{\rm HD}$  might have been expected to be reversed for the dppe versus the more electron-rich depe Mn complex (which should elongate the H-H bond more). Also the trends for Re phosphite and phosphine complexes are the reverse of what might have been expected electronically, e.g.  $[Re(CO)_3 \{P(OEt)_3\}_2]^+$  has a lower  $J_{\rm HD}$  than that for  $[\text{Re}(\text{CO})_3(\text{PCy}_3)_2]^+$ . Thus the very high  $J_{\rm HD}$  for 6 might be somewhat anomalous, although it is not contrary to expected trends.

Regarding the lability of the H<sub>2</sub> ligand in **6** in solution, the bound H<sub>2</sub> is readily displaced by CH<sub>2</sub>Cl<sub>2</sub> when the H<sub>2</sub> atmosphere is released by exposure of the solution to a He atmosphere. This is similar to the behavior for Cr(CO)<sub>3</sub>(P'Pr<sub>3</sub>)<sub>2</sub>(H<sub>2</sub>) and other highly labile H<sub>2</sub> complexes, and it appears that the H<sub>2</sub> in **6** is more weakly bound than the H<sub>2</sub> coordinated to the less electrophilic Mn fragments **1** and **2**. For example, 95% of complex **2** was found to be bound to H<sub>2</sub> at  $-10^{\circ}$ C under similar conditions. A possible explanation is that the bulky phosphine groups in [Mn(CO)<sub>3</sub>(PCy<sub>3</sub>)<sub>2</sub>(H<sub>2</sub>)]<sup>+</sup> inhibit displacement of the H<sub>2</sub> by the solvent, CH<sub>2</sub>Cl<sub>2</sub>.

The  $H_2$  ligand in 6 does not appear to be as prone towards heterolytic cleavage as that in  $[Re(CO)_4(PR_3) (H_2)$ ]<sup>+</sup> (Eq. (4)), where protonation of ethers such as <sup>*i*</sup>Pr<sub>2</sub>O readily occurs [11]. An analogous experiment was performed in which H<sub>2</sub> was added to a solution of 4 in  $CD_2Cl_2$  at liquid nitrogen temperature to form 6, which was then warmed to  $-78^{\circ}$  and treated with ca. 1.5 µl of <sup>i</sup>Pr<sub>2</sub>O (ca. three equivalents). <sup>1</sup>H- and <sup>31</sup>P-NMR spectra were recorded from -80 to 25°, but only the <sup>*i*</sup> $Pr_2O$  complex 9 (see below) and free H<sub>2</sub> were observed at all temperatures. Similarly, reaction of 4 with <sup>i</sup>Pr<sub>2</sub>O followed by addition of  $H_2$  (3 atm) at  $-198^{\circ}C$  and warming gave only 9. Although the stronger binding of the ether than  $H_2$  may interfere with a potential  $H_2$ heterolytic cleavage process, the acidity of the bound  $H_2$  is probably lower than that in  $[Re(CO)_4(PR_3)(H_2)]^+$ . In the latter, formation of a hydride-bridged dinuclear species on deprotonation as in Eq. (4) is thermodynamically very favorable, but such a complex (or a mononuclear hydride) is not seen for the Mn system

## 2.3. Binding, heterolytic cleavage, and alcoholysis of silanes

When a  $CD_2Cl_2$  solution of 4 was treated with 1.2 equivalents of  $Et_3SiH$  at  $-78^{\circ}C$ , a yellow solution was generated which showed a triplet at high field,  $\delta = -$ 16.1 ( $J_{\rm HP} = 15.9$  Hz), corresponding to one proton. When PhSiH<sub>3</sub> was used in place of Et<sub>3</sub>SiH, a similar <sup>1</sup>H-NMR signal appeared at  $\delta$  – 15.3 ( $J_{\rm HP}$  = 15.5 Hz) corresponding to ca. 0.2 proton, i.e. about 20% complexation by the silane (recorded at  $-60^{\circ}$ C; no reaction occurs at  $-80^{\circ}$ C here). In addition, the <sup>31</sup>P-NMR spectra showed a new signal at 159.3 ppm along with the 155.6 ppm peak from the starting 4. These new signals presumably represent an  $\eta^2$ -bound R<sub>3</sub>Si-H complex 7 similar to structurally-characterized Mo(CO)( $\eta^2$ - $H-SiR_3$ )(diphosphine)<sub>2</sub> [34] and  $[Re(CO)_4(PR_3) (\eta^2$ -H–SiEt<sub>3</sub>)]<sup>+</sup> observed by low-temperature NMR [13]. As in the latter, the  $J_{\rm HP}$  coupling constants are too small for a Mn-H complex (typical  $J_{\rm HP} = 40-60$  Hz [14,35]).  $J_{\text{SiH}}$  could not be measured due to the Mn quadruplar broadening. When the mixtures were raised to r.t., the high field proton signal disappeared, and the <sup>1</sup>H-NMR spectra indicated the formation of a mixture of several unidentified products that were likely formed by heterolytic cleavage of the  $\eta^2$ -Si–H bond as for the Re complex [13]. No clear evidence was present for formation of a Mn hydride complex, either as an intermediate or a final product. GC-MS analysis of the volatiles released from 7a showed (Et<sub>3</sub>Si)<sub>2</sub>O to be the major component, which is presumably generated from reaction of the silvl cation with adventitious moisture as for  $[Re(CO)_4(PR_3)(HSiEt_3)]^+$  as well as a  $[CpFe(CO)(PPh_3)(HSiR_3)]^+$  system [36].

$$2[Mn(Et_3SiH)]^+ \rightarrow 2Et_3Si^+ \xrightarrow{H_2O} (Et_3Si)_2O + 2H^+$$
(5)

As mentioned in Section 1, this is typical behavior for a cationic silane complex because the Si atom of the Si–H bond is highly activated toward nucleophilic attack on account of depletion of the electron density of the Si–H bond on coordination to cationic metal centers.

The fate of the Mn fragment is not shown in Eq. (5) but it is conceivable that if a Mn–H species forms it could be immediately protonated to the H<sub>2</sub> complex **6** by the protons released from silane hydrolysis in Eq. (5). The labile H<sub>2</sub> in **6** could then be displaced by  $CH_2Cl_2$  solvent, to regenerate **4** in the absence of excess H<sub>2</sub>.

$$[\operatorname{Mn}(\operatorname{Et}_{3}\operatorname{SiH})]^{+} \to [\operatorname{Mn}(\operatorname{H})]^{+} \to [\operatorname{Mn}(\operatorname{H}_{2})]^{+} \\ \xrightarrow{\operatorname{CH}_{2}\operatorname{Cl}_{2}}_{-\operatorname{H}_{2}} [\operatorname{Mn}(\operatorname{CH}_{2}\operatorname{Cl}_{2})]^{+} \qquad (6)$$

Such formation of  $[CpFe(CO)(PPh_3)(H_2)]^+$  from hydrolysis of [CpFe(CO)(PPh<sub>3</sub>)(HSiR<sub>3</sub>)]<sup>+</sup> has previously been observed and employed for catalytic silane alcoholysis [36]. The Mn system also catalyzes reaction of phenol with triethylsilane, presumably by a mechanism similar to that proposed for the Fe system (Scheme 4). The ratio of silane (0.307 mmol) to the precatalyst 4 was about 24:1, and a slight deficiency of phenol (0.287 mmol) was added at  $-78^{\circ}$ C in a NMR tube reaction. <sup>1</sup>H-NMR spectra recorded from -80°C to 25°C all showed a broad signal at -9.23 ppm presumably due to the  $H_2$  complex formed according to Scheme 4. Upon exposure of the solution in the NMR tube to a He atmosphere after reaction was complete, the <sup>1</sup>H-NMR spectrum showed a triplet at -16.75 ppm corresponding to the silane  $\sigma$  complex, 7a. The latter would be expected according to Scheme 4 since unreacted silane was present (stoichiometric excess over phenol reactant) and is a stronger ligand than either  $H_2$  or CH<sub>2</sub>Cl<sub>2</sub>. The expected product of silane alcoholysis, PhOSiEt<sub>3</sub>, was isolated in ca. 50% yield, demonstrating that the reaction is catalytic. Manganese carbonyl species such as  $Mn(CO)_5(CH_3)$  and  $[Mn(CO)_4Br]_2$  are also effective precatalysts for alcoholysis of silanes [38] and may operate via a similar pathway, i.e. the true catalyst is an electrophilic unsaturated Mn fragment that heterolytically cleaves an intermediate silane  $\sigma$  complex.



Scheme 4.

### 2.4. Olefin, ether, and amine complexes (8–10) and summary

Reaction of 4 with *cis*-cyclooctene (cco) afforded 8 as a yellow solid in 65% yield. The olefinic protons show a <sup>1</sup>H-NMR signal at 4.81 ppm, upfield shifted from the 5.67 ppm found for free cco. The cco cannot be removed under prolonged vacuum. Lastly, addition of <sup>*i*</sup> $Pr_2O$  or Et<sub>3</sub>N to CD<sub>2</sub>Cl<sub>2</sub> solutions of 4 resulted in the respective ether or amine complexes 9 and 10. All of these molecules appear tightly bound to the metal Mn, and none were in equilibrium with CD<sub>2</sub>Cl<sub>2</sub> or H<sub>2</sub> under three atmospheres of hydrogen gas. The formation of the  ${}^{i}Pr_{2}O$  complex is somewhat surprising since  ${}^{i}Pr_{2}O$ does not bind to the  $[Re(CO)_4(PPh_3)]^+$  fragment, although the latter does coordinate Et<sub>2</sub>O [11,12]. That could mean the bis(phosphite) Mn complex is either more electrophilic than the Re monophosphine species, or has more room for coordination (or both electronic and steric factors are more favorable). There may be more steric interference of the 'Pr groups with the phenyl groups on the single *cis* phosphine on Re than with the two tied-back phosphites on Mn.

In summary, the highly electrophilic [Mn(CO)<sub>3</sub>- $(P(OCH_2)_3CMe)_2$ <sup>+</sup> fragment with *trans* tied-back phosphite ligands binds dichloromethane solvent to form the structurally characterized complex 4, isolated as a BAr<sub>F</sub> salt. The latter contains novel interligand hydrogen bonding between an acidic hydrogen on the CH<sub>2</sub>Cl<sub>2</sub> ligand and an oxygen of the phosphite. The coordination of CH<sub>2</sub>Cl<sub>2</sub> is in direct contrast to the lack of binding by the phosphine analogues [M(CO)<sub>3</sub>- $(PCy_3)_2$ <sup>+</sup> (M = Mn, Re) that contain agostic interactions. Presumably the tied-back phosphites give less steric congestion and more electrophilic metal centers, and of course cannot engage in agostic interactions that would compete with external ligand binding. Under a hydrogen atmosphere, 4 is in equilibrium with the  $\eta^2$ -H<sub>2</sub> complex (6), and the very high  $J_{\rm HD}$  for 6 points to the high electrophilicity of the metal center. Silanes also displace the bound CH<sub>2</sub>Cl<sub>2</sub> at low temperature, but the  $\eta^2$ -Si–H bond undergoes heterolytic cleavage on warming. 4 catalyzes reaction of SiHEt<sub>3</sub> with phenol to give  $Et_3SiOPh$  and  $H_2$ . The  $CH_2Cl_2$  ligand in 4 is irreversibly displaced by olefins, ethers and amines to form stable adducts. The results in these and other related systems bring to the forefront the subtle balance between electronic and steric forces that occur on addition of sixth ligands to  $16 e^{-}$  metal fragments.

#### 3. Experimental

All manipulations were performed either under a helium atmosphere in a Vacuum Atmospheres drybox or under an argon atmosphere using standard Schlenk

techniques unless otherwise specified. CH<sub>2</sub>Cl<sub>2</sub> was distilled under Ar from P<sub>2</sub>O<sub>5</sub>. Toluene and hexane were purified by passing through an alumina column. Hydrogen gas was obtained from an in-house gas plant and was of UHP grade. HD gas was purchased from Isotec Inc. Other reagents were purchased from Aldrich, Acros or Strem Chemical Co. and used as received. <sup>1</sup>H-, <sup>31</sup>P-, <sup>13</sup>C- and <sup>11</sup>B-NMR spectra were recorded on a Varian Unity 300 spectrometer with field strengths of 300, 121, 75 and 96 MHz, respectively. <sup>1</sup>H and <sup>13</sup>C chemical shifts were referenced to the residual solvent resonance relative to TMS; <sup>31</sup>P and <sup>11</sup>B chemical shifts were referenced to external 85% H<sub>3</sub>PO<sub>4</sub> and BF<sub>3</sub>-Et<sub>2</sub>O, respectively. Infrared spectra were recorded on a Nicolet Avator 360 FTIR spectrometer. Elemental analyses were performed in house on a Perkin-Elmer Series II CHNS/O model 2400 analyzer.

#### 3.1. Preparation of mer-Mn(P(OCH<sub>2</sub>)<sub>3</sub>CMe)<sub>2</sub>-(CO)<sub>3</sub>(Me) (**5**)

A mixture of Mn(CO)<sub>5</sub>Me (0.210 g, 1.00 mmol) and P(OCH<sub>2</sub>)<sub>3</sub>CMe (0.311 g, 2.10 mmol) in toluene (ca. 10 ml) was refluxed for ca. 16 h under Ar atmosphere to give a yellowish suspension. The mixture was then filtered and the solid washed with toluene (2 × ) and hexane (2 × ) to give an off-white solid. The solid was purified in air by flash silica-gel column chromatography eluting with CH<sub>2</sub>Cl<sub>2</sub> to give the product (0.390 g, 87%) as a white solid. Anal. Calc. for C<sub>14</sub>H<sub>21</sub>O<sub>9</sub>P<sub>2</sub>Mn: C, 37.35; H, 4.70. Found: C, 37.16; H, 4.77%. FTIR (CD<sub>2</sub>Cl<sub>2</sub>, cm<sup>-1</sup>) 2035 w, 1952 vs. 1926 s. <sup>1</sup>H-NMR (CD<sub>2</sub>Cl<sub>2</sub>),  $\delta$  4.20 (t, J<sub>HP</sub> = 2.2 Hz, 12H, P(OCH<sub>2</sub>)<sub>3</sub>-CMe), 0.76 (s, 6H, P(OCH<sub>2</sub>)<sub>3</sub>CCH<sub>3</sub>), -0.62 (t, J<sub>HP</sub> = 8.0 Hz, 3H, MnCH<sub>3</sub>). <sup>31</sup>P-NMR (CD<sub>2</sub>Cl<sub>2</sub>),  $\delta$  167.7.

## 3.2. Preparation of $[mer-Mn(P(OCH_2)_3CMe)_2(CO)_3-(ClCH_2Cl)][BAr_F]$ (4)

A yellow solution of **5** (0.101 g, 0.224 mmol) and [Ph<sub>3</sub>C][BAr<sub>F</sub>] (0.248 g, 0.224 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (5 ml) was stirred at r.t. for 20 min. Hexane (15 ml) was then layered on top of the CH<sub>2</sub>Cl<sub>2</sub> solution and the mixture was cooled at  $-30^{\circ}$ C to give the product (0.238 g, 82%) as yellow crystals. Anal. Calc. for C<sub>46</sub>H<sub>32</sub>BCl<sub>2</sub>F<sub>24</sub>O<sub>9</sub>P<sub>2</sub>Mn: C, 39.91; H, 2.31. Found: C, 40.06; H, 2.52%. FTIR (CD<sub>2</sub>Cl<sub>2</sub>, cm<sup>-1</sup>) 2096 w, 2025 vs. 2004 s. <sup>1</sup>H-NMR (CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  7.74 (s, 8H, BAr<sub>F</sub>), 7.58 (s, 4H, BAr<sub>F</sub>), 4.39 (t, J<sub>HP</sub> = 2.2 Hz, 12H, P(OCH<sub>2</sub>)<sub>3</sub>CCH<sub>3</sub>), 0.86 (s, 6H, P(OCH<sub>2</sub>)<sub>3</sub>-CCH<sub>3</sub>). <sup>13</sup>C-NMR (CD<sub>2</sub>Cl<sub>2</sub>),  $\delta$  15.1, 34.1, 77.6. <sup>11</sup>B-NMR (CD<sub>2</sub>Cl<sub>2</sub>),  $\delta$  - 12.1. <sup>31</sup>P-NMR (CD<sub>2</sub>Cl<sub>2</sub>),  $\delta$ 155.2.

#### 3.3. Reaction of 4 with $H_2$ to give 6

A J-Young NMR tube was charged with 4 (0.020 g) and CD<sub>2</sub>Cl<sub>2</sub>. On a vacuum line, the yellow solution was frozen and evacuated, then backfilled at liquid N<sub>2</sub> temperature with H<sub>2</sub> (ca. 3 atm). The tube was closed off and warmed to r.t. to give a yellow solution. <sup>1</sup>H-NMR (CD<sub>2</sub>Cl<sub>2</sub>),  $\delta$  –9.19 (br, s), 0.88 (s, 6H), 4.40 (t, 12H, J = 2.2 Hz), 7.56 (s, 4H), 7.72 (t, 8H, J = 2.4 Hz). <sup>31</sup>P-NMR (CD<sub>2</sub>Cl<sub>2</sub>),  $\delta$  155.1. The NMR spectrum obtained at –60°C was identical. However the complex partially decomposed while left standing at r.t. for ca. 16 h.

## 3.4. Reaction of **4** with silanes to give **7** and heterolytic cleavage

Et<sub>3</sub>SiH (7.3 μl, 0.046 mmol) was injected into a 5 mm NMR tube containing **4** (49.4 mg, 0.038 mmol) in CD<sub>2</sub>Cl<sub>2</sub> (0.5 ml) at  $-78^{\circ}$ C to give a yellow solution. NMR spectra were recorded at  $-60^{\circ}$ C. <sup>1</sup>H-NMR (CD<sub>2</sub>Cl<sub>2</sub>),  $\delta - 16.81$  (t,  $J_{HP} = 15.9$  Hz, Et<sub>3</sub>Si–H), 0.87 (s, 6H), 1.06 (m, 15H), 4.37 (s, 12H), 7.62 (s, 4H), 7.78 (s, 12H). <sup>31</sup>P-NMR (CD<sub>2</sub>Cl<sub>2</sub>),  $\delta$  161.2. The NMR spectra recorded at progressively elevated temperatures of  $-40^{\circ}$ C,  $-20^{\circ}$ C and 0°C showed no apparent change. However at r.t. the complex decomposed to several unidentified products within 10 min.

On analogy, reaction of **4** with PhSiH<sub>3</sub> at  $-60^{\circ}$ C gave a similar silane complex which decomposed at r.t. Relevant NMR data: <sup>1</sup>H-NMR  $\delta$  -15.3 (t, J = 15.3 Hz, ca. 0.2 H). <sup>31</sup>P-NMR,  $\delta$  159.3, 155.6 (major).

#### 3.5. Reaction of 4 with $Et_3SiH$ and phenol

Et<sub>3</sub>SiH (49 µl, 0.307 mmol) was injected into a 5 mm NMR tube containing 4 (17.0 mg, 0.013 mmol) at -78°C. Then a solution of phenol (27.0 mg, 0.287 mmol) in  $CD_2Cl_2$  (ca. 0.6 ml) at ca.  $-40^{\circ}C$  was transferred via cannula to give a yellow solution. <sup>1</sup>H-NMR spectra recorded from -80°C to 25°C all showed a broad signal at -9.23 ppm presumably due to the H<sub>2</sub> complex, **6**. <sup>31</sup>P-NMR ( $-80^{\circ}$ C):  $\delta$  160.0 (major), 155.0 (minor); (-40°C) 160.3; (0°C) 160.5; (25°C) 161.0. After the solution in the NMR tube was exposed to a He atmosphere, NMR spectra were recorded immediately at RT. The <sup>1</sup>H-NMR spectrum showed a triplet at -16.75 ppm with a coupling constant of 15.5 Hz, and the <sup>31</sup>P-NMR showed a singlet at 161.4 ppm. These signals correspond to the silane  $\sigma$ complex (7a). PhOSiEt<sub>3</sub> was isolated in ca. 50% yield by chromatography on a silica gel column and identified by GC-MS and NMR data.

## 3.6. Preparation of $[mer-Mn(P(OCH_2)_3CMe)_2(CO)_3-(cis-cyclooctene)][BAr_F]$ (8)

To a mixture of 5 (74.3 mg, 0.165 mmol) and [Ph<sub>3</sub>C][BAr<sub>F</sub>] (182.6 mg, 0.165 mmol) was added cis-cyclooctene (0.1 ml, 0.768 mmol) followed by CH<sub>2</sub>Cl<sub>2</sub> (2 ml) at 25°C. The resulting yellow solution was stirred for 30 min. Hexane (12 ml) was layered on top of the  $CH_2Cl_2$  solution, and the mixture was cooled to -30°C to give the product (0.151 g, 65%) as a light yellow solid. Anal. Calc. for C53H44BF24O9P2Mn. 0.5CH<sub>2</sub>Cl<sub>2</sub>: C, 44.26; H, 3.10. Found: C, 44.60; H, 3.33%. FTIR (CD<sub>2</sub>Cl<sub>2</sub>, cm<sup>-1</sup>) 2083 w, 2013 vs. (br). <sup>1</sup>H-NMR (CD<sub>2</sub>Cl<sub>2</sub>),  $\delta$  0.79 (s, 6H), 1.53 (m, 6H), 1.85 (m, 2H), 2.05 (m, 2H), 2.35 (dd, 2H, J = 13.4, 3.4 Hz), 4.25 (t, 12H, J = 2.2 Hz), 4.81 (m, 2H, CHCH2), 7.57 (s, 4H), 7.73 (s, 12H). <sup>13</sup>C-NMR (CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  15.0, 26.2, 28.3, 31.5, 33.6 (CMe), 77.3 (OCH<sub>2</sub>), 101.6 (CHCH<sub>2</sub>). <sup>31</sup>P-NMR (CD<sub>2</sub>Cl<sub>2</sub>),  $\delta$  157.2.

## 3.7. Reaction of **4** with isopropyl ether and $H_2$ to give **9**

To a solution of 4 (20 mg) in CD<sub>2</sub>Cl<sub>2</sub> (0.5 ml) in a J-Young NMR tube at 25°C was added <sup>i</sup>Pr<sub>2</sub>O (ca. 4 µl, 1.2 equivalent) to give a yellow solution. The mixture was then charged with H<sub>2</sub> under liquid N<sub>2</sub> temperature (ca. 3 atm), and NMR spectra were recorded at temperatures progressively from -60 to 25°C. Neither the H<sub>2</sub> complex 6 nor a hydride complex was observed within the chemical shift ranges of 20 to -30 ppm. H<sub>2</sub> was then released and NMR spectra were recorded at 25°C showing the presence of the ether complex 9. FTIR (CD<sub>2</sub>Cl<sub>2</sub>, cm<sup>-1</sup>) 2092 w, 2017 vs., 1982 s. <sup>1</sup>H-NMR  $(CD_2Cl_2)$ ,  $\delta$  0.88 (s, 6H), 1.10 (d, 12H, J = 6.1 Hz, ether OCHCH<sub>3</sub>), 3.68 (hept, 2H, J = 6.1 Hz, ether OCH), 4.38 (t, 12H, J = 2.2 Hz), 7.57 (s, 4H), 7.73 (s, 8H). <sup>13</sup>C-NMR (CD<sub>2</sub>Cl<sub>2</sub>),  $\delta$  22.6, 22.8, 69.3 (ether OCH), 76.9 (OCH<sub>2</sub>). <sup>31</sup>P-NMR (CD<sub>2</sub>Cl<sub>2</sub>), δ 156.5. Data for free (Me<sub>2</sub>CH)<sub>2</sub>O: <sup>1</sup>H: 3.63 ppm (OCH, same pattern and J as bound ether);  $^{13}C$ : 68.0 (OCH).

#### 3.8. Reaction of 4 with triethylamine and $H_2$ to give 10

Same procedures were followed as for the reaction with isopropyl ether. FTIR (CD<sub>2</sub>Cl<sub>2</sub>, cm<sup>-1</sup>), 2092w, 1999s, 1957s. <sup>1</sup>H-NMR (CD<sub>2</sub>Cl<sub>2</sub>),  $\delta$  0.82 (s, 6H), 0.98 (t, J = 7.1 Hz, NCH<sub>2</sub>CH<sub>3</sub>, free Et<sub>3</sub>N), 1.34 (t, 9H, J = 7.3 Hz, coordinated NCH<sub>2</sub>CH<sub>3</sub>), 2.48 (quartet, J = 7.1 Hz, NCH<sub>2</sub>, free Et<sub>3</sub>N), 3.30 (quartet, 6H, J = 7.3 Hz, coordinated NCH<sub>2</sub>), 4.30 (t, 12H, J = 2.2Hz), 7.56 (s, 4H), 7.72 (s, 8H). <sup>31</sup>P-NMR (CD<sub>2</sub>Cl<sub>2</sub>),  $\delta$ 156.2.

#### 3.9. X-ray structure determination of 4

A yellow, needle-shaped crystal of 4 was attached to a glass fiber using a spot of silicone grease. The air-sensitive crystal was mounted from a matrix of mineral oil under argon gas flow. The crystal was immediately placed on a Bruker P4/CCD/PC diffractometer, and cooled to 203 K using a Bruker LT-2 temperature device. The data were collected using a sealed, graphite monochromatized Mo $-K_{\alpha}$  X-ray source. A hemisphere of data was collected using a combination of  $\varphi$  and  $\omega$ scans, with 20 s frame exposures and 0.3° frame widths. Data collection and initial indexing and cell refinement were handled using SMART software [39]. Frame integration and final cell parameter calculation were carried out using SAINT software [40]. The data were corrected for absorption using the SADABS program [41]. Decay of reflection intensity was not observed.

The structure was solved in space group  $P\overline{1}$  using direct methods and difference Fourier techniques. The initial solution revealed the manganese, and the majority of all non-hydrogen atom positions. The remaining atomic positions were determined from subsequent Fourier synthesis. Hydrogen atom positions were fixed in ideal geometries (C–H = 0.93 for aromatic, 0.97 for methylene and 0.96 A for methyl). The hydrogen atoms were refined using the riding model, with isotropic temperature factors fixed to 1.5 (methyl) or 1.2 (methylene and aromatic) times the equivalent isotropic U of the carbon atom they were bound to. The final refinement [42] included anisotropic temperature factors on all non-hydrogen atoms, and converged with final residuals of  $R_1 = 0.0716$  and  $R_{2w} = 0.2035$ . Structure solution, refinement, graphics, and creation of publication materials were performed using SHELXTL NT [43].

#### 4. Supplementary material

Crystallographic data for the structural analysis has been deposited with the Cambridge Crystallographic Data Centre, CCDC no. 139109 for compound **4**. Copies of this information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK (Fax: +44-1223-336033; e-mail: deposit@ccdc.cam.ac.uk or www: http:// www.ccdc.cam.ac.uk).

#### Acknowledgements

This work was supported by the Department of Energy, Office of Basic Energy Sciences, Chemical Sciences Division. J.H.V. is grateful to the Director of the Los Alamos National Laboratory for postdoctoral funding.

#### References

- [1] P.G. Jessop, R.H. Morris, Coord. Chem. Rev. 121 (1992) 289.
- [2] D.M. Heinekey, J.W.J. Oldham, Chem. Rev. 93 (1993) 913.
- [3] R.H. Crabtree, Angew. Chem. Int. Ed. Engl. 32 (1992) 789.
- [4] J.Y. Corey, J. Braddock-Wilking, Chem. Rev. 99 (1999) 175.
- [5] J.J. Schneider, Angew. Chem. Int. Ed. Engl. 35 (1996) 1068.
  [6] W.A. King, X.L. Luo, B.L. Scott, G.J. Kubas, D.W. Zilm, J.
- Am. Chem. Soc. 118 (1996) 6782.[7] W.A. King, B.L. Scott, J. Eckert, G.J. Kubas, Inorg. Chem. 38
- (1999) 1069.
- [8] A. Toupadakis, G.J. Kubas, W.A. King, B.L. Scott, J. Huhmann-Vincent, Organometallics 17 (1998) 5315.
- [9] D.M. Heinekey, C.E. Radzewich, M.H. Voges, B.M. Schomber, J. Am. Chem. Soc. 119 (1997) 4172.
- [10] M.D. Butts, G.J. Kubas, X.L. Luo, J.C. Bryan, Inorg. Chem. 36 (1997) 3341.
- [11] J. Huhmann-Vincent, B.L. Scott, G.J. Kubas, J. Am. Chem. Soc. 120 (1998) 6808.
- [12] J. Huhmann-Vincent, B.L. Scott, G.J. Kubas, Inorg. Chem. 38 (1999) 115.
- [13] J. Huhmann-Vincent, B.L. Scott, G.J. Kubas, Inorg. Chim. Acta 294 (1999) 240.
- [14] G. Albertin, S. Antoniutti, M. Bettiol, E. Bordignon, F. Busatto, Organometallics 16 (1997) 4959.
- [15] T.M. Becker, J.A. Krause-Bauer, C.L. Homrighausen, M. Orchin, Polyhedron 18 (1999) 2563.
- [16] M.W. Holtcamp, L.M. Henling, M.W. Day, J.A. Labinger, J.E. Bercaw, Inorg. Chim. Acta 270 (1998) 467.
- [17] L. Johansson, O.B. Ryan, M. Tilset, J. Am. Chem. Soc. 121 (1999) 1974.
- [18] R.A. Periana, D.J. Taube, S. Gamble, H. Taube, T. Satoh, H. Fujii, Science 280 (1998) 560.
- [19] S. Geftakis, G.E. Ball, J. Am. Chem. Soc. 120 (1998) 9953.
- [20] X.L. Luo, R.H. Crabtree, J. Am. Chem. Soc. 111 (1989) 2527.
- [21] R.D. Closson, J. Kozikowski, T.H. Coffield, J. Org. Chem. 22 (1957) 598.
- [22] J.G. Verkade, T.J. Huttemann, M.K. Fung, Inorg. Chem. 4 (1965) 228.

- [23] S.R. Bahr, P. Boudjouk, J.Org. Chem. 57 (1992) 5545.
- [24] (a) M.D. Butts, G.J. Kubas, B.L. Scott, J. Am. Chem. Soc. 118 (1996) 11831. (b) B.A. Arndtsen, R.G. Bergman, Science 270 (1995) 1970.
- [25] D. Huang, J.C. Huffman, J.C. Bollinger, O. Eisenstein, K.G. Caulton, J. Am. Chem. Soc. 119 (1997) 7398.
- [26] T.D. Newbound, M.R. Colsman, M.M. Miller, G.P. Wulfsberg, O.P. Anderson, S.H. Strauss, J. Am. Chem. Soc. 111 (1989) 3762.
- [27] M. Brown, J.M. Waters, J. Am. Chem. Soc. 112 (1990) 2442.
- [28] G.R. Desiraju, Acc. Chem. Res. 24 (1991) 290.
- [29] R. Taylor, O. Kennard, J. Am. Chem. Soc. 104 (1982) 5063.
- [30] D. Braga, F. Grepioni, K. Biradha, V.R. Pedireddi, G.R. Desiraju, J. Am. Chem. Soc. 117 (1995) 3156.
- [31] G.J. Kubas, J.E. Nelson, J.C. Bryan, J. Eckert, L. Wisnieski, K. Zilm, Inorg. Chem. 33 (1994) 2954.
- [32] P.A. Maltby, M. Schlaf, M. Steinbeck, A.J. Lough, R.H. Morris, W.T. Klooster, T.F. Koetzle, R.C. Srivastava, J. Am. Chem. Soc. 118 (1996) 5396.
- [33] T.A. Luther, D.M. Heinekey, Inorg. Chem. 37 (1998) 127.
- [34] X.L. Luo, G.J. Kubas, J.C. Bryan, C.J. Burns, C.J. Unkefer, J. Am. Chem. Soc. 116 (1994) 10312.
- [35] R.J. Ruszczyk, B.L. Huang, J.D. Atwood, J. Organomet. Chem. 299 (1986) 205.
- [36] (a) E. Scharrer, S. Chang, M. Brookhart, Organometallics 14 (1995) 5686. (b) S. Chang, E. Scharrer, M. Brookhart, J. Mol. Catal. A 130 (1998) 107.
- [37] G. Albertin, S. Antoniutti, S. Garcia-Fontan, R. Carballo, F. Padoan, J. Chem. Soc. Dalton Trans. (1998) 2071.
- [38] B.T. Gregg, A.R. Cutler, Organometallics 13 (1994) 1039.
- [39] SMART version 4.210, 1996, Bruker Analytical X-ray Systems Inc., 6300 Enterprise Lane, Madison, WI 53719.
- [40] SAINT version 4.05, 1996, Bruker Analytical X-ray Systems Inc., Madison, WI 53719.
- [41] SADABS, first release, George Sheldrick, University of Göttingen, Germany.
- [42]  $R_1 = \sigma ||F_o| |F_c|| / \sigma |F_o|$  and  $R_{2w} = [\Sigma[w(F_o^2 F_c^2)^2] / \Sigma[w(F_o^2)^2]]^{1/2};$  $w = 1/[\sigma^2(F_o^2) + (0.0968*P)^2]$
- [43] SHELXTL NT version 5.10, 1997, Bruker Analytical X-ray Instruments Inc., Madison, WI 53719.